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CHAPTER 1

INTRODUCTION

The objective of this thesis is to present the results of an investigation into the

problem of producing a discrete stochastic time series that has any desired bispectral

characteristic. In essence this amounts to an inversion of the bispectrum; however,

the resulting time series is not guaranteed to be unique in any way except that it has

the specified bispectrum.

Typically most papers dealing with the bispectrum or its applications are

interested in how one estimates the bispectrum from a sampled subset of the

underlying random process [e.g., Brillinger and Rosenblatt, 1967b; Rao and Gabr,

1984; Raghuveer and Nikias, 1986; Nikias and Raghuveer, 1987 ]. This thesis is

interested in exactly the opposite problem, i.e., how does one obtain or estimate the

times series knowing only its bispectrum. While this is not a well studied problem,

fortunately much can be done by a straightfoward generalization from the power

spectrum, which is very well known. In addition there is one advantage to inverting

the bispectrum, that is not present in the bispectral estimation problem. It is that one

can assume to have the true bispectrum and not just an estimate of it, unlike the

reverse problem where one cannot generally assume to have all the representations

of a random process.

t;1
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The inversion can be accomplished following a procedure first suggested by

Wolinsky [1988]. The starting point is to assume a model for the time series. There

are many models one could choose for this purpose. However, most involve very

complex and often unsolvable relations between the model parameters and the

bispectrum. But since the choice is open it only makes sense to choose one that will

make the inversion as easy as possible. Accordingly the model

x(t) = 11(t) + e(t) + g(rs) t+r) TI (t+s) (1.1)
rO 5=0

has been chosen, for reasons which will be explained more fully in chapter 3. Here

x(t) is the desired time series, et) and ql(t) are Gaussian independent identically

distributed (i.i.d.) random variables with zero mean and variance u2 , and g(r,s) is

called the kernel function. This is a slightly different model than the one suggested

by Wolinsky, but the resulting relation of the kernels to the bicovariance is

essentially the same. They both possess a finite linear relation between the kernel

function and the bicovariance. Accordingly we will define a loose class of models

called the universal bispectral model (UBM) whose members have this characteristic.

This term is due to Wolinsky, but he applied it to only one specific model. The main

features belonging to this particular model, which are not found in Wolinsky's, are

that its kernel function can be made to be symmetric in r and s, i.e., g(rs) = g(s,r);

the expression relating the bicovariance to the kernel function does not involve any

shifting of the bicovariance; and, third, the power spectrum of the time series can be

changed by more than an additive constant without changing the bispectrum. The
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ability to alter the power spectrum is the result of an extra degree of freedom in the

kernel function.

From the model equation in (1.1), expressions for the kernel function g(rs)

can be derived in terms of either the bispectrum or the bicovariance. These

calculations, which are done in the case of discrete time/continuous frequency,

constitute the heart of chapter 3. In chapter 4 the subtleties of approximating the

discrete time/continuous frequency case with discrete time/discrete frequency Fourier

transforms are discussed and these results are applied to some specific cases. The

discrete time/discrete frequency is found to place some restrictions on the arbitrariness

of the bispectrum.

There are two applications of bispectral inversion that the writer is aware of,

but potentially there are many more. One application would be to test bispectral

estimators. If one had a time series with a known bispectrum, one could then test an

estimator to see how noise affected the convergence time, the amplitude, or the

position of the peaks of the estimated bispectrum. Another application would be in

the area of communications. A communications system using linear signals, for

instance, requires that multiple transmissions be separated in either a time window or

a frequency bandwidth. In other words, multiple signals of distinct frequency

bandwidths can be sent at the same time and still be recoverable, and multiple signals

occupying the same frequency bandwidth can be sent in different time windows and

still be resolvable. But of course multiple linear signals cannot share both the same

frequency band and the same time window and still transmit recoverable information.

With nonlinear signals, however, this is not necessarily true. Multiple nonlinear
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signals occupying identical frequency bands and occurring simultaneously can be

recovered and separated provided there exists a nonlinear characteristic that is

different. The bispectrum is such a characteristic. Thus by exploiting the bispectral

characteristics of the signals, a communications channel could simultaneously

transmit a second or a third signal in the same frequency band as the first and still be

able to demultiplex each signal without ambiguity. The use of nonlinear multiplexing

to encode signals is the topic of a paper by Hinich [1979]. However, in Hinich's

paper it is the multiplexing'operation that is nonlinear and not the signal itself. In

either case, the end result is to increase the number of signals that can be transmitted

simultaneously without increasing either the required bandwidth or the duration of the

time window the signals occupy. The only price to be paid is the additional

computation required to estimate the bespectrum.

Before proceeding to the derivation of the g-kernels it would be well,

considering the relative newness of the bispectrum to engineering applications, to

present a review of the bispectrum and its characteristics.



CHAPTER 2

BISPECTRAL TUTORIAL

Essentially the bispectrum is one component in the set of statistical quantities

called higher order spectra. These higher order spectra are the frequency domain

equivalent of higher order statistical quantities, called cumulants, in that they are

Fourier transform pairs. The higher order spectra, or polyspectra, provide useful

information about nonlinear systems. Just as linear systems can be analyzed by linear

regression techniques using the power spectrum, so in an entirely analogous manner

nonlinear systems can be analyzed by multiple regression techniques using

polyspectra. In the event there is only one time series, the second order spectra

reduces to the ordinary power spectrum, while the third order polyspectra is called the

bispectrum. If there are two time series the above quantities become the cross

spectrum and the cross bispectrum, respectively. Likewise other polyspectra can be

defined, such as the fourth order spectra which is commonly called the trispectrum.

However the higher orders are increasingly more complex and difficult to actually

compute. Only with the advent of faster hardware will polyspectra of greater order

be practical to compute. In addition polyspectra beyond the trispectrum involve more

than three dimensions making them very difficult, if not impossible, to visualize.

The purpose of this chapter is, first, to provide some background on

polyspectra culminating in a definition of the bispectrum, and secondly to introduce

5
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some of its mathematical properties, paying particular attention to its symmetries.

The important topic concerning estimation of the bispectrum will be passed by

without much comment as it is not particularly germane to this thesis.

2.1 Definitions: Random Processes, Cumulants, Moments and
Polyspectra

Loosely speaking, detailed knowledge of the topics in measure theory on

which the theory of random variables and random processes rests, and from which

the measure theoretic definitions of expected value and other statistical quantities

come, is not necessary in the actual estimation of polyspectra. However it is good to

have some idea where these concepts come from. Hence this section starts with a

very brief definition of random processes. Further details can be found in works

such as Priestly [1981] or, for the more ambitious, Loeve [1977].

2.1.1 Random Processes: The First Building Block

A random process is defined as a collection of Borel measurable functions

(random variables) [ Xt, t e T ) indexed by a parameter t belonging to a set T, and

the measure is some probability measure defined on some probability space. If T is

the set of real numbers ( t : - - < t < cc ), denoted by 9t, then the process is called

continuous. If T is the set of natural numbers [ t : ... -2,-1,0,1,2... ), denoted

by N, then (Xt} is a discrete parameter process. If t is associated with time, the

process is called a time series. While this is the most common association, it is not

necessarily the only one. This thesis will deal primarily with a discrete parameter

process. It is worth noting that there are two parameters involved in a random
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process. The obvious one is t, and the not so obvious one is the subset of the set

Q = (co : o)e Q) which X maps t 9. Thus for any fixed t the random process

reduces to a random variable, while for any fixed (o e Q the random process

becomes a simple function of t sometimes called a sample path or trajectory. The

reason co is not commonly written will be clear shortly.

The k dimensional probability distribution function is defined as a function

mapping 9tk to 9t such that

FX(l)X(t2).... X(tk)[Xl,...xk] = P( X(tl)<X 1 . . ,X(tk) <Xk) (2.1)

where P is the probability measure mentioned above and k e N [Wise, 1986]. In the

foregoing definitions probability spaces and measures have been used, but have not

been explicitly defined. The reason is due to Kolmogorov who proved that given a

set of finite dimensional distribution functions satisfying the necessary requirements,

there exists a probability space and a probability measure on that space whose family

of finite dimensional distribution functions coincides with the given family of finite

dimensional distributions [Wise, 1986]. Thus in practice it is not necessary to show

the existence of probability spaces or measures. Having the distribution function

guarantees their existence. Since all statistical properties are completely specified by

the distribution function, neither is it necessary to find the probability measure or

space in order to find moments or cumulants. It is for this same reason that (o is not

written explicitly.

A strictly stationary random process is one where, for k e N,

F[ X(tl+t), X(t2+t),. . . ,X(tk+t) ] = F[ X(ti), X(t2), .. . X(tk)]. (2.2)
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This means that the distribution function does not change when all the index

parameters t are shifted an equal amount up or down the axes in 9tk. A less stringent

restriction is stationarity to order n. A random process is considered stationary to

order n, n E N, if Eq. (2.2) holds for any k < n.

2.1.2 Cumulants and Moments

The final definition before reaching the bispectrum is that of cumulants.

Following Rosenblatt [1981] we define the moment generating function (also called

the characteristic function) of the vector random process 1Xa1(t)...Xak(tk)) as

k
0(,W)= (Vr... k = E[ej ¥WX (2.3)

The joint moments can be found as the coefficients of ('4i .... k) in the Taylor series

expansion of OI(V) about the origin provided the moments are finite. As Brillinger

[1975] points out, however, this is not really a problem since all time series available

for processing are bounded. The cumulants of the same set of random variables are

then defined as the coefficients of the Taylor series expansion of the log O(W) about

zero. Explicitly this gives for the relation of the joint cumulant sequence of order r,

where r-nl+n2+.., nk [Nikias et al.,19871:

r

C .. k , j) (in (2.4)
1. 3 nI- 12 n Ik W WI0'V I a2 ... ak ¥ V .. k-

The tj refers to the random variable specified by evaluating Xaj at tj. Generally

cumulants (and moments) are regarded as constants. Random processes, however,

are a collection of random variables of which each combination has a cumulant.

*'1 . . ,..mm m m m m• m i[ gl l m
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Hence the rib order cumulant of the k-variate random process can be viewed as a

sequence in 9tk indexed by the same k parameters as the random vector forming the

cumulant or moment. The corresponding expression for the joint moment sequence

of order r, which is defined as

m'a, (t t.. -tk) E(xa,(tIf'x.,(t 2)2 -  xa(tk) n  
, (2.5)

is simply

rnj .. na. {()( , I 2"-' k)}
m,., (t I.- .tk) = (J)r n2 nk (2.6)

°3 ')2 ""../ D °INI .., ~ =

where aj, je Nk specifies the random process and n specifies the power to which the

ajith process is raised. Further examination of these expressions can provide some

intuitive explanation of the difference between moments and cumulants. Dr. Choi's

Ph.D. dissertation provides good insight on this point [Choi, 1984]. If any of the

random variables in (2.3) are independent, the expectation in (2.3) will factor into the

product of at least two expectations. Each term will be a function of only those

random variables that are independent of all the other random variables. This is to

say that O(W) can be written as '('V)---1(V1)2(W2) where the arguments of 01 and

02 are two disjoint sets of variables. The partial derivative in (2.6) is not affected by

this factoring. However, when the logarithm of this factored expression for O(y) is

taken, a sum will result. The partial derivative in (2.5), to which the cumulants are

related, is affected by the factoring. When (2.3) can be factored, (2.5) becomes

identically zero. ( Notice that the logarithm does not commute with the expected

value operator, the definition of a cumulant is the log of an expected value, not the
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expected value of a log.) Thus while the cumulant provides information about the

dependence of the random variables (Choi, 19841, the moments provide information

about the joint distribution functions. This information is the statistical analog to the

information provided by the moment of inertia about the distribution of mass in a

physical system. Some of the important properties of cumulants obtainable from

(2.3) and (2.4) are repeated here [Rosenblatt, 19811:

1) C(X1(tl),...,Xk(tk)} is symmetric in all of its arguments.

2) If any group of X's are independent of the others,

C{Xl(t),....,Xk(tk)) = 0.

3) For any two independent groups (XI, ... , Xn) and Xn+1, .... ,Xk)

C(Xl(tl) + Xn+l(tn+ 1) .... Xn(t n) + Xk(tk)) = C(Xl(t0)....Xn(t n )

+ C[Xn+1(tn+l),...,Xk(tk)).

4) For a set of constants Ial...ak),

C(alXl(tl)...akXk(tk) = al...akC[Xl(t l)...Xk(tk)}.

As alluded to earlier, the polyspectra are defined as Fourier transform pairs

with the cumulants. However, since characteristic functions are in general not

available, the above expressions are not useful in the actual computation of

cumulants. Since they are also not directly computable from representations of a

random process [Kendall et al., 1958], it is of interest to obtain relations for

cumulants in terms of the moments which are directly computable from ensemble
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representations of a time series. These relations are obtained by taking the logarithm

of the Taylor series expansion of (2.3) ( whose coefficients are the moments) and

expanding it again as a Taylor series about the origin. The coefficients of this

expansion are the cumulants by definition. This is worked out in detail in

Kendall et at. [1958]. The cumulants can then be found by suitable matching of

terms. An expression for the moments in terms of the cumulants can be found in an

analogous manner. This derivation was done for the general case by Leonov and

Shriyaev in 1959. In spectral analysis applications, however, only the simple

moments are of any interest. Simple moments are those where nl=n2=...=nk=l.

Hence we can use much simpler results, which are only valid in two special cases.

Case 1:

n, = n2 =...= nk -1 (simple moments)

Case 2:

n2 = ... =nk = 0, nj arbitrary.

With these restrictions we have from their results:

E{ xlt. . .xk(tk)=cv) .O k)(27
1)

where v = (I... uk), A)j is a partition of the integers ( 1,2,...,k), and the summation

is over all such partitions. Likewise the expression for the cumulants in terms of the

moments is



12

C(x 1(t I) ... x k(t) " (-l)P-'(p-)!m(ul)...m(o) (2.8)
U

where the v and the summation are the same as before and m is a simple moment

about the origin. Thus simple cumulants of order k can be expressed as polynomials

of simple moments of order no greater than k and the moments can be expressed as

polynomials of the cumulants of order no greater than k. The information contained

in the excluded cases (i.e., non-simple moments) is not being thrown away. It is

actually already included as a special case in a higher order (rth order) simple
21 111moment. For instance, M1 2 (t,t 2) I 12 (t 1,t,t 2). The second case, i.e.,

(n2 = ... = nk = 0, nj arbitrary) is simply a special case of the first one, namely

the univariate. In addition, for a stationary time series it turns out to always be a

constant. Hence, without much danger of confusion the notation can be simplified by

dropping the superscripts since they are always one in the cases of interest. By way

of illustration consider the simple fourth order cumulant of a univariate random

process (that is, Xj= X2= ... Xk). According to (2.8) we have

C Il I IlIt Dt, 23,t34) = MI Il IftlP ,t, t3,t 4) - M I It Pt 2)MI 10t3,t4) - M I I(tPt 3)M I I( t2, t 4)

- in I(t 1,t4)m 11( 2,t 3) - MI(t 1)ml 1 I(t 2,t 3,t 4) - M I(t 2)m I 1 1 (t1,t33t4)

-in l(t3)m 1 ( ,t 2,t 4) - M n(t4)m (t m,t 2,t3)

* m(t1)m (t)M (t2,t3 ) + m(t2)mi(t3)mI I(t2,t4)

4mI(t 2)mm(t4)mIn1(t4,t 3) + m 1(t3)mn(t)m (1 ,t 2))
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- 6m1(t1)m1(t2)m1(t3)m1(t4) (2.9)

If we now assume that the random process is zero mean, i.e., m(t)=0, and that it is

stationary to at least fourth order, (2.9) becomes much simpler. A direct consequence

of the application of the definition of stationarity to the expected value operator

(EIx] = fX dF ) is that moments of stationary random processes can be written in

terms of time differences. If the time lag is chosen to be Tn-1 = to- tj for n

e ( 1,2,...,k), then the kth order moment can be written in terms of k-I lags

because the lag corresponding to n=1 has become identically 0 and can be dropped.

Again the notation can be simplified. By convention, when dealing with a univariate

sequence, the moment we have written as m1 .  is often written as ml+l+...+1

Following this convention (2.9) simplifies to

C4('91,'T2,%3) = m4(%[t,%2,%3)

- m2(%1 )m2(c3-- 2) - m2(r 2)m2('@3-- ) - m2('C3)m 2(%2 --%T) . (2.10)

Now suppose that the random variables defined by fixing c2 and 3 are independent

of those at 0 and c. Then the expectation of the first term on the right side of (2.10)

will factor making m4(?1,2,T3)=m 2(Tl)m 2 ( 3-r 2) and the first two terms in (2.10)

would cancel out. The last two terms become zero, because the mean is zero, causing

the whole cumulant to vanish. The nonstationary cumulant in (2.9) would vanish as

well. If one random variable were independent of some, but not all of the others,

then some but not all the terms in (2.9) or (2.10) would cancel. Thus the cumulant

measures the degree of dependence between the random variables. Table 1 provides a

summary of the relation between cumulants and moments up to order four. The table

___

__ _ __ _ _ __ _ _
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is written in the univariate notation, but can be generalized to the multivariate case by

simply replacing term for term the univariate moment (cumulant) with the desired

moment (cumulant).

Tab.1 Relation Betwen umulans and Moment

C1 = mI =0

C2(T1) = m2('Tl)

C3('91,'2) = m3(tl,2)

C4(1,%2 3) = m4( 1l, 2, 3) -m 2(t)m 2(' 3- 2)

-m2(T2)m2(T5- "T I)-m2( C)m2(T2 " T 1)

2.1.3 Polyspectra

Using the results of the last two sections the formal definition of polyspectra

follows very easily. If a k-dimensional random process satisfies the stationarity

requirement given in (2.2) and the moment m ...ak(tl...tk) exists, then, following

Brillinger [1965], the kth order cumulant can be written:

t
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Ck...z 1 ... t(. e .. ... + f d -...dfh (2.11)

where gal.. jfI. .fk)8(fl+ -''+ fk) is the kth order cumulant spectral density

function. Since stationarity causes the spectral density to be zero except when

- f1- f2- .... fk-t , the kth order density can be written as a function of k-I

arguments with the omitted kth argument understood to be the sum of the first k-I

frequencies. The expression in (2.11) can be inverted to give an expression for the

spectral density in terms of the cumulant; or equivalently, the kth order cumulant is

the Fourier transform of the kth order polyspectra. If we first integrate with respect to

f3 using the dirac function, we can rewrite (2.11) as

Ca, tI.. t=.. .ff ..df (2.12)

where fk is not written but is understood to be fk= - f - f2- ... - fk-1 and cn-tn-tk.

Note that the right side is a function of r only. This produces the same result obtained

earlier for stationary time series; namely, the cumulant can be written in term of time

differences. Thus the frequency domain equivalent of writing moments in term of

time lags is that the spectra is zero except at points where all the frequencies sum to

zero. Continuing the inversion of the Fourier transform gives for the spectral density

function of order k-I for a stationary time series:

ga. a-&f .."fk-1) = "ff. Cat-. a4(l.--Ck.1) e -j2x (f f k' d ...d~k.l . (2.13)
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For the univariate case with k=2 we have from the table relating cumulants

and moments that C1 (T)=mlI(T). Since for a real time series m1 I(T) is just the

autocorrelation, we see that the second order cumulant spectra reduces to the power

spectrum as stated earlier. When k=3 the spectral density function is called the

bispectrum. In the bivariate case, i.e., C12 ) or C1 12(r 1,i 2), the spectral density is

called the cross-power or bispectrum. In this thesis we will be interested exclusively

in the bispectrum. In particular we will be interested in the discrete frequency /

discrete time bispecumn. The objectives of the next section will be to bridge the gap

between the discrete and continuous versions of the bispectrum and to present some

of the details of the bispectrum that will be important in the inversion process.

2.2 The Bispectrum

In concentrating on (2.13) for the specific case where k=3 we will make some

simplifying assumptions. From this point onward we will restrict ourselves to real,

stationary, zero mean time series. The assumption of reality is very easily justified.

Any experimentally measured time series is, of course, real. They do not necessarily

satisfy the other two assumptions though. The zero mean assumption is easily

achieved by simply subtracting the mean. The stationarity assumption, on the other

hand, is rarely, if ever, completely satisfied in experimental data. It is an

approximation that is valid over "short" intervals. Bat in the case being investigated

by this thesis the actual model generating the series is known exactly. Hence we can

say without approximation that the time series is stationary. With these assumptions
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let us first rewrite (2.13) in convenient, more common notation. Since X(t) is real

we can equate

C3(TIT) = m3 (,l,T2) = E[ X(t)X(t+T1 )X(t+t2] J R(?1, 2)

When this equivalence is applied to (2,13) in the specific case of the bispectrum, it

gives:

B(f If 2) - fJ'E[ X(t)X(t+c )X(t+'C2)]e" j2Kc 1 d f2)d d 2  (2.14)

where B is the bispectrum and the integral is the two-dimensional Fourier transform

of the third order moment. Fig. 2.1 shows the symmetry regions of the third order

moment sequence, C3(?1,12).

'low
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Fig. 2.1 Symmetry of the Tird Order Moment
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g3(f 1f~f)Of 1 + f2 + f3) = fff C3(tltt 3) eC'oth + d4 + 4kdj dt2dt3 . (2.15)

Making the two substitutions

1) C0t13t2,03 = E [X(ti)X(t 2)X(t3)]

2) x(t) =J (f) e j2 fdf2> x,=fx o X
and interchanging the order of integration allows (2.15) to be rewritten as:

g3(f 1,f 2,f3)&f I + f2 + f3) = fffadj2dfff dtldt2dt3

(X(fi)X(f)X(f3  ei2x{(fr-fL)t + (f-f 2 )t 2 + (fi-f3)t(.
x d s].X(l f(2)X f3)]J~ (2.16)

Carrying out the the three integrations with respect to t produces the product of three
Dirac functions 8(f1 - f 1) 8(f2 - f 2) 8W3 - f 3) . This makes the integration with

respect to f trivial, giving for (2.16)

g3(f,f 2,f 3)8(fI + f2 + f 3) = [X(f )X(f2 )X(f 3)] (2.17)

Thus 4X(f )X(f,)X(f3I = 0 unless all three frequencies sum to zero. Taking this

into account, (2.17) can be rewritten to give the more revealing expression for the

bispectrum

B(f,f 2 f)8(0) = E [X(fl)X(f)X (fl+ f2)] (2.18)
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From this expression one can see that the bispectrum is nonzero only when

the frequency pair (fl, f2) and its sum (fl+f2) are coupled so as not to be statistically

independent. The bispectrum is a measure of quadratic nonlinearity because it is a

quadratic interaction between fl and f2 which will produce a third frequency (fI+f 2)

that is statistically dependent to the first two. From the expression in (2.18) it is a

simple matter to determine the symmetries of the bispectrum, although they can also

be found from (2.14) using the symmetry of the third order moment shown in

fig 2.1.

2.2.1 Symmetries of the Continuous Frequency Bispectrum

From (2.18) it is clear that fl and f2 are interchangeable.

B(f1 ,f2) = B( f 2, f 1).

This produces the line of symmetry labeled 1 in fig 2.2. Substituting f, -+ (-fl)

and f2 -+ (f 2) into (2.18) and using the fact that X(f) = X*(- f) gives a second

symmetry.

B(f 1,f2) = B (- ,- f 2).

This produces the line of symmetry labeled 2 in fig 2.2. Two additional relations can

be found by first substituting in fI -. (fI+f 2 ) and either f2 -+ (- f2) or

f2 (- fl) and then applying the conjugate property of the Fourier transform.
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B(flf 2) = B*(fl+ f2,- fl)

B(flf 2) = B*(fi+ f2,- f2)

Application of property 2 to each of the terms in property 3 produces two more terms.

This gives five terms in addition to property 1. Applying property 1 to these five

gives five more for a total of ten terms. These symmetries divide the bispectral

domain into 12 equivalent regions as shown in fig 2.2. Although the regions do not

appear to be of equal area, each region does contribute equally to the region of

support. The shaded region represents the region of support for the bispectrum of a

bandlimited process. The bispectrum is uniquely specified by knowing the values in

any one of these regions. If we take the region ((fl,f 2): f, > f2; f2  0 ) to be

the primary region (principal domain) then the 11 other equivalent regions are given

explicitly in terms of this primary region by (2.19). Thus for a bandlimited process

the region of support within the principal domain is the only part of the bispectrum

that needs to be computed. When arbitrarily specifying the bispectrum it should be

noted that the bispectrum must be purely real when either fl or f2 is zero. This is

evident from (2.18) or from the fact that this is the only way to satisfy (2.19) on the

boundaries between regions of the bispectrum which are complex conjugates of each

other.
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If computers worked with continuous time variables we could stop here.

However they do not. As will be seen shortly, this discretization produces some

significant changes in the the f-equency plane of the bispectrum.

B(f1 ,f) Q E
B(f 2,f 1 ) l

B*(-f 2,f1 +f2) El]

B*(-f1 ,fl+f2) MZ

B (-fg-f2, f) ['0

B (-f1-f2,f 2 ) [6]
B( f, 1f) = B(f 1 , -f 2 ) F71 (2.19)

B*(.f2,-f 1)  10

B (f 2,-f1 -f2 ) L2]
B (fI,-f 1-f2)

B *(fl+f 2,-f 1)

B *(f +f2,f2 ) [7
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2.2.2 Symmetries of the Discrete Time/Continuous Frequency

Bispectrum

The discrete time series causes the bispectrum to be periodic in f, and f2 with a

period of f. or 1, where f. is the sampling frequency and I is in terms of normalized

frequency. This is a direct consequence of the periodicity of the Fourier u'ansform of

a discrete time series as can be seen from (2.18). Thus the frequencies that had to

sum to zero in the continuous case now only have to sum to 0 (mod 1). The two-

dimensional Fourier transform of the third order moment (bispectrum) now becomes:

Bff j2x(fjg + fit
B~fl~2) Y , cc,,qe(2.20)

'l1,C2 = -

where the domain of B extends over the whole real plane. Although B is defined

over the whole real plane, it is now doubly periodic with respect to both f, and f2

with period 1. This implies B(fl,f 2) = B(fl,f 2 +l) = B(fl+l,f 2 +1). The

fundamental domain is defined as the region ((fIf2):Y'2<ffI <2 _/2 <f 2</2};

the principal domain continues to be that portion of the fundamental that uniquely

specifies the bispectrum. The tilda is to distinguish the periodic and non-periodic

versions of B. Equation (2.20) is the discrete equivalent of (2.14). The discrete

equivalent to (2.15) is similar except that now because of periodicity (fl+ f2+ f3 )

may sum to 0 (mod 1). The dirac on the right side of (2.15) becomes

&n - [fI + f2 + f3]) where n = (0, :t 1, ±2,Q). The rest of the development of the

discrete equivalent to (2.18) follows in a completely analogous manner allowing

(2.18) to be written in the discrete case as:
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B(fl,f 2) = E[ X(f,)X(f 2)X(n -(f 1+ f2j)] (2.21)

where X(f) - x(t)ej 2 ft

where the overlined portion represents the modified selection rule for the third

frequency. When (fl,f 2) lie inside the fundamental domain, the only two values of

n that yield a third frequency that is also between -/2 and /2 are n = 0,1. The

other values of n, which put the third frequency outside the fundamental domain,

yield only redundant information since X(f+n) = X(f). When n=O, (2.21) reduces to

(2.18); the resulting symmetries are the same as before. When n=l, however, some

new symmetries result. Substituting fj -+ (1- fl- f2) and f2 -
+ fl or f2 gives two

additional properties.

Additional Svnmantries for Discrete Time*

a) B(flf 2) = B(l-f 1-f 2, fl)

b) B(fl,f2) = B(1-f1-f2, f2)

If f, and f2 are chosen from region 1 in fig. 2.3, these additional relations simply

repeat the previous ones in (2.19). If, however, they are chosen from region 2 there

is no repetition; they yield new symmetries, as evidenced by the fact that both of the

resulting terms still lie within region 1 on fig 2.2. It now appears that there are

--
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Fig-. 2.3 Princinal Domain of Discrete Time BiApectrum

f92

additional symmetries within region 1 on fig. 2.2, and indeed this is the case as is

shown in fig. 2.3a. Applying property 1 to the area shown in fig. 2.3a produces the

three equivalent regions shown in fig. 2.3b. The use of property 2 will give six

mCt equivalent regions in the fourth quadrant for a total of 12 additional symmetrical

regions as shown in fig. 2.3b. These "extra" regions arise because of the double

periodicity of the bispectrum. Using this periodicity these 12 "extra" regions can be

paired with the original 12 regions shown in fig. 2.2 to produce a different

I
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fundamental domain. This alterate fundamental domain is shown in fig. 2.4. This

is the fundamental domain that would result from the application of (2.19) to

frequency pairs (fl,f2) in both regions of the principal domain shown in fig. 2.3.

This is the more usual definition of the fundamental domain. It is simpler in that it

does not require the use of additional symmetry relations; however, the two are

otherwise entirely equivalent. In this thesis we will work with the square domain for

the simple reason that it is much easier to perform the inverse discrete Fourier

transform over a square region than over a hexagonal one.

Fig. 2-3a Additional Bisetral SXmmetr

for Discrete Time

1f2

Property a
/ Y3. Y2 .
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Notice that the additional symmetry in fig. 2.3 falls outside the region of

suppor for a bhidlimited system. This means that for a properly sampled, stationary

time series region 2 in fig. 2.3 will be zero. Recently it has been suggested that a

noAiero result in this region implies either a nonstationary or aliased time series

[Hinich et l., 1988].

The relations defined in (2.18) and (2.14) coupled with a knowledge of the

symmetries given in section 2.2.2 provide the mathematical framework for the

inversion of the bispecmun. Much detail has been accorded to these symmetnes

because they are crucial in performing the inversion. If they are not satisfied, the

third order moment obtained by transforming the bispectrum will not be real or will

not have the proper symmetries for a third order moment.

I
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Fig. 2.3b Additional Biagectra Symmetry
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PIg. 2.4 Fundamental Domain of Discrete Time Biffpectru
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CHAPTER 3

INVERSION OF THE BISPECTRUM

The inversion of the bispectrum essentially involves finding a stochastic time

series whose bispectrum satisfies some predetermined constraints. For instance it

might be desired to produce a time series whose bispectrum is a constant over all

points or, at the other extreme, the requirement might be to have a bispectrum that is

zero at every point but one. With the exception of two philosophical differences, the

method used to invert the bispectrum is almost the exact reverse of that used in the

more usual problem of estimating the bispectrum of a time series. The first difference

is that one can assume to start with the true bispectrum and not just an estimate of it.

When attempting to estimate the bispectrum from a finite number of ensemble

representations, one generally assumes to have only part of the time series. The goal

is to obtain a large enough subset of this time series so that one can obtain an estimate

of the bispectrum to within some acceptable confidence level. In the present

problem, however, we assume to know the bispectrum exactly. But, in general, the

time series represented by this bispectrum (i.e., the one we wish to compute) is

infinite. In a finite time span we will only be able to generate a finite number of

ensemble representations of this underlying time series. Hence we are in essence

only estimating the time series. The quality of the estimate could be stated in terms of

the number of ensembles that are needed to produce a bispectral estimate that is

arbitrarily close to the true bispectrum. Since this number could vary depending on

31
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the estimator, this provides a means to perform comparison tests between bispectral

estimators. The second difference is that while every time series has only one

bispectrum, there are, in general, many different time series that all have the same

bispectrum. This is completely analogous to the fact that different time series (and in

general an infinity of time series) have the same autocorrelation function. This second

difference is not of great concern here since all that is needed is one time series. The

fact that there may be more is of no consequence.

It should also be noted that the results of this chapter are valid for continuous

time without any further modification. The problems arise when one attempts to

handle discrete frequencies, as will be seen in chapter four.

3.1 Necessary and Sufficient Conditions for Invertibility

To invert the bispectrum we will use the simplest class of models that are

capable of reproducing the bispectrum. To be capable of reproducing an arbitrary

bispectrum the model must satisfy three general requirements.

1) It must have a non-zero bicovariance.

2) The resulting expression for the bicovariance of the model in terms of

the g-kernels must be afunction, which we will call the bicovariance

functon. (The domain of this function is the kernel sequence, and the

range is the bicovariance or third order cumulant sequence.)

3) The domain of the kernel sequence must be the same as the domain of

the bicovariance.
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The first one is obvious and included only for completeness. The second

condition guarantees that the kernels will be mapped to only one bicovariance.

Essentially it eliminates the possibility that two different bicovariances will both have

the same g kernels, and ensures that it will be possible to express the model kernels

in terms of a unique bicovariance. This requirement might eliminate some AR

processes. Note, however, that the inverse relation need not be a function, because it

is permissible to have different kernel sequences produce the same bicovariance; the

significance of this will be apparent later when we attempt to invert the bicovariance

function. The third condition guarantees the ability to reproduce any arbitrary

bispectrum. It removes any constraints on the bispectrum or bicovariance. Without

this condition it would be possible to change the bicovariance without changing the

g kernels. There are many models that could be constructed which fit these general

requirements. The problem is to find a model which has a bicovariance function

which is easily invertible. The quadratically nonlinear, infinite order moving average

(MA) model of the universal bispectral class is ideally suited to this problem. Since

the bispectrum can be interpreted as a measure of quadratic coupling, it is no surprise

that the model best suited to the inversion should itself be quadratically nonlinear.

The model, introduced in chapter one as the universal bispectrum model, is repeated

here in (3.1) for convenience.

x(t) = 1(t) + 1) + Y _(rs)c(t + r)rKt + s) (3.1)
r-Os-O

where e(t) and 7(t) are Gaussian independent identically distributed (i.i.d.) random

variables with zero mean and variance a 2 or N(O,a 2). This model is unique in that
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the bicovariance function is a finite linear relation consisting of the the sum of six

kernel terms. Models outside the universal bispectral class possess more complicated

bicovariance functions which are very difficult, if not impossible, to invert.

3.2 Inversion in the Time Domain

There are two equivalent methods of inverting the bispectrum. The first is in

the time domain. The three main steps in this method are as follows.

1) Solve for the bicovariance of the model using the definition of the

bicovariance.

2) Invert the resulting expression to obtain a new expression for the

kernels in terms of the bicovariance.

3) Compute the g-kernels from the relation found in 2) thus specifying

the time series by means of (3.1).

3.2.1 The Bicovariance Function of the Universal Bispectral

Model

The first step in obtaining the bicovariance is to substitute (3.1) into the

expression for the third order cumulant sequence (or the moment since they are

equal):

C3(,r,r 2) = E[ X(t)X(t+r )X(t+' 2)]  (3.2)

Doing this we obtain:
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¢3(-rj2) flEe(t) + n(t) + A (rt + OF)# + S)

" 9(t- ) + ?Kt +r) + g(rs)e(t + ,+ r)7Xt + T1+S)

" et +r2) + It +2) + ~g(rs)e(:+ -r2+ r)iXt + 'r2t s) I(3.3)

Expanding this product yields a sum of 27 terms. Invoking the fact that e(t) and i7(t)

are independent and zero mean, and the fact that odd order moments of Gaussian

random variables are zero, reduces this expansion to only six non-zero terms. For

example the first term of the expansion would be E [t) At +r1 ) a(t +r 2)]

This is a third order moment of a Gaussian random variable and therefore zero. The

term containing the expression

E[(t + r)iXt + s)e(t + -rl+ r)t + r,+ s)e(t + r2+ r)irt + r2+ s)]

is also zero since the expectation can be factored into the product of two terms each

of which is a third order moment of a Gaussian process. Writing only the six

remaining terms gives for the bicovariance

c3(r 1,r2) -E[ e(t) ift +,r,) g(rs)e(t+ +r 2+ r)7Xt + r2+ s)

+ " )" t + r 2),-g(rs)e( + r,+ r )t + r, s)
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+ )(t) e + ,r) Y Yg(r)e(t + '2+ r )v(t + r2+ s)

" 17(t 4 ) t + 'r2) Z gg(rs)e(t + r)yKt + Ts)

" et + zt+,r.,) YY ~r~~ + r )lXt + s)) (3.3)

Taking the expected value of this expression allows us to write (3.3) as

c3 ,¢)= 04 g(rs)85(s + 1:2- ?1) r + )

CO +X Zg(rs)(+ r,- rA2)r+ 2)

+ e g(r,s)8(r + r,- ?2)as + r,)

+ g(rs).(r + ri- r1) s + 12)

+ 4g(rs)8(r - ?r)S$s - T2)

+ YAY ~g(rs)(r - 'r2)c RS - 'r,) }(3.4)
where 8() is the Dirac delta function. The delta function collapses the double

summation to just a single term allowing one to write (3.4) as the linear finite relation
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c3( 1 .r ) = (tr ,ir) + .g(?r 1) + g(-ri'r2-ri) + gr - .r1

+ g(-r2r rT) + 8(r r2-2) (3.5)

This is a very simple, pleasing result, but it can be simplified even more.

Notice that this expression ( but not the kernel function itself) automatically possesses

the symmetry necessary for a third order moment of a real time series since the terms

on the right side are exactly the same as the symmetries of the third order moment

shown in fig 2.1. Thus substituting into (3.5) the symmetry relations for a third order

moment will produce a system of six equations each containing six kernel terms, but

in each case the right side will remain unchanged as expected. But the symmetry also

has the less desirable effect of making the system indeterminate; another method of

inversion must be used. One simplification comes from noting that for certain values

of 'T and r2 not all six g terms are present. Inside any of the three regions in fig. 3.1

only two terms from the right side of (3.5) exist. On the boundaries all the terms

from the adjacent regions exist. Thus at the origin {(r,s): rf-s=O) all six terms

contribute, but in this case (3.3) reduces to c3(0,0) = 6g(0,0). On the other

boundaries only four terms contribute. Two terms are excluded because the values,

for which the delta function in (3.2) is non-zero, are not in the range of summation

causing the whole summation to vanish. Exactly which terms contribute depends on

which boundaries are being considered. Off the origin and boundaries only two

terms contribute to the bicovariance. The other four do not contribute for the reason

given above. The exact relation between the bicovariance and the kernel function is

given in (3.6).

t 
t 

,, 
|
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c3Qr,r 2) 8 1-r2) + g(r 2,T 1) Ti> O, ?2> 0

2 g(rl ,O) + g(O,' ) T > O -F2 
= 0

& I -r2 ,' -2 ) + g( -2 , -r --2 ) T 1 > T2 , -r2 <  0

2 g(--r1,O) + g(O,1 )  Ir <O, 2l = T'

A(2 ,' ) + g(-'r,'r2--r) T2> 'r, -r <0
2 &r2,0) + g(O,,r )  r2 > O, T1 = 0

6 g(0,0) T = 0, 2 = 0 (3.6)

This simplification is the result of causality and therefore could also have been

obtained from (3.5) directly by noting that g(r,s) = 0 when r < 0, or s < 0.

3.2.2 Inversion of the Bicovariance Function

The next step in the inversion of the bispectrum is to invert (3.6) and express

the kernels in terms of the bicovariance. However the inverse of this equation is not a

function. There are an infinity of kernel functions that will satisfy (3.6). This arises

from the fact that in order to uniquely specify the bicovariance we only need to know

the values of C3(rs) in the region ((r,s): s > 0, r > s) ). For any point in this

region, however, there are two kernel terms that contribute as can be seen in fig. 3.1.

This amounts to an extra degree of freedom. The extra degree of freedom is actually

not a problem, but rather it is an advantage. We are free to specify any relation

between g(r,s) and g(sr) that we desire. (Note that we are not talking about the

specific term g(r,s), but rather how the weights in the region ((r,s): s > 0, r > s)

are related to the weights in the region ((r,s): r > 0, s > r) as shown in fig. 3.2).
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Fig. 3.2 Relation Between the Kernels
g(r,s)

t g(q,P)

g(P~q)

Since e sux of Sp,q) a, dqp) e.,t,6 us to c(pq),
dhe ma of (p q) and (qp) am ar~ q as oiv as the

sum is t& sme.

The bicovariance in any region is dependant on only the sum of two kernel

terms. This means the value of the individual terms can vary without affecting the

bicovariance as long as the sum remains constant. The extra degree of freedom is

one reason this particular model was used instead of the one suggested by Wolinsky

[1988]. These two degrees of freedom give one the ability to generate multiple time

series which have identical bicovariances, but whose other moments (and hence

polyspectra) are in general different. This is because the other moments will in

general be dependent on the value of individual kernel terms and not just on the sum

of two terms. This will be explored briefly when we look at the autocorrelation of the

model. For the purpose of reproducing the bispectrum, let g(r,s) = g(s,r). This

provides the simplest possible relation for (3.6). We may now write:

I
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-- 3(Cj,,9) 'C>0, C2>0

1

1 c O M,0 'C1=0, '2=0 (3.7)

The rest of (3.6) does not need to be inverted. The other expressions only duplicate

the information given by (3.7). This should be no surprise since the weights are zero

outside of the domain defined in (3.7).

Given a bicovariance one could at this point compute the kernels from (3.7)

and then compute a time series using (3.1) that had the given bicovariance. As it

turns out, this is a rather slow way to compute the time series. It is much faster to

compute the Fourier transform of the time series and then take the inverse transform.

Since the goal is to compute a time series given its bispectrum, it would also be nice

to stay entirely in the frequency domain and be able to go directly from the bispectrum

to the Fourier transform of the time series without the need to inverse transform

continuous frequency quantities into the time domain. Having to relate the model

parameters to the bicovariance in the time domain causes approximations to enter the

picture. The approximations arise from representing the bicovariance, which is the

inverse transform of a continuous function, by the inverse disrte Fourier transform.

Thus staying in the frequency domain would in effect allow one to know the Fourier

transform of the time series exactly. Thus one would only have to resort to an

approximation when computing the time series from its transform. But it turns out

that this trouble spot is not evaded so easily. The reason is that one cannot exploit
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the effect: of causality in the frequency domain. Thus there is no way to invert what

would be the Fourwr transform of the bicovariance function except in the non-causal

case where the kernels equal the bicovariance scaled by a factor of six. However, it

is still informative to look at the inversion process in the frequency domain because,

having found the kernels in the time domain, they can then be transformed to dhe

frequency domain where the computation of the time series is more easily

accomplished. But before doing this we will look briefly at the autocorrelation of the

model.

3.2.3 Auto-correlation of the Universal Bispectral Model

The procedure for computing the autocorrelation of the model is entirely

analogous to what was done earlier. Using the definition C2(t) m E [ x(t)x(t+)]

gives for the second order cumulant sequence:

C2) = 202 8() + 01 gr,,)gr- ,-) -(3.8)

It is not obvious that (3.8) has the necessary symmetry, but it does. The important

thing is that this equation is sensitive to the relation between g(rs) and g(sr). Thus,

as claimed, it is possible to produce different autocorrelztion functions without

changing the bicovariance simply by changing the relation between g(r,s) and g(sr).

However, it is certainly not a trivial problem to determine the relation necessary to

produce a desired autocorrelation function. For completeness the power spectrum is

given below.

i
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G(fi, f2 ) is the two-dimensional Fourier transform of the kernels. The limitation on

arbitrrily specifying the power spectrum stems from the fact that once the bispectrum

is picked to be nonzero at a certain point, say (f1,f2), the power spectrum cannot be

set to zero at fl, f2 or fl+ f2. In the non-causal model the transform of the weights is

simply the bispectrun scaled by a factor of six. This will be shown in the next

section. But, as will be shown, even in the causal case the modulus of G(fl, f2 )

bears some resemblance to the modulus of the bispectrum. Thus it is an interesting

sidelight to note how the power spectrum is related to the bispectrum in the

non-causal case. This is shown in fig. 3.3. In the figure the diagonal lines represent

the path of the integral for specific values of f. The bispectral symmetry forces the

power spectrum to be symmetric about the origin as it should be.

i2 U jm ':
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Fig.3.3 Contributionof flinnectrumto the Power Apdecrm
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3.3 Inversion in the Frequency Domain

The first item on the agenda is to find the Fourier transform of the model. We

first substitute into (3. 1) the Fourier integral for e(t+r) and i(t+r). This gives for

x(t)

40 ",(r'W2)"42"dr2 3.9x~t=7X)+~t)Y~j(rS) de
r-O f f
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Interchanging the order of integration and summaton and rearanmgng the terms gives

XQt) = 7q(t) + e(t) + Wf~~ f)pg~f2 Y grsefl-f2 (3.10)

Since the kernels are zero for r or s < 0, the summation on the right constitutes the

conjugate of the Fourier transform of g(r,s) or G*(fl,fl). Taking the Fourier

transform of both sides of (3.10), and bringing the Fourier transform operator

through the integrals gives

X + 0 ~ + ff Y 2 t t 2ef1) (f 2) G * (f I ("f 2 ) (3.11)

wher Gq'f2 ) ~ -j2x(Ar +f~s)

rng--m sr=- e

The transform of the exponential is simply the delta function. The delta function

allows evaluation of one integral, reducing the double integral to a single integral and

allowing us to write (3.11) as

X(f) = 717() + 0 + f 41 eff I)Txf -fI) G*f -/1) (3.12)

At this point we can substitute (3.12) into (2.18). This gives:

-5-- -. -.---
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x(f i )=E[ {tfI+8VI+ f G2i-J) *(ff -)}

X {Wt2) + 9(f2) + fY2t APWD 2 -J5G * , f 2-.P)}

PX Tf 1f.f2) +W ff2) f +f2-f) G*(ff, +f2-J))] (3.13)

What follows now is similar to what was done in the time domain except that here we

are computing the bispectrum directly in terms of the two-dimensional Fourier

transform of the kernels instead of the bicovariance in terms of the kernels. There are

27 terms in the expansion, and again only six remain after taking the expected value.

Note that qE{" I)d2)] = 21W +f2) allows us to write for the bispectrum

B(f If2) = U f7 4, 4G , fi f2 -f)&f -fl) + G(f, fl+f2 -)1Wf -f2)

+ G *(f,f2-)(f +f1 ) + G (f,f-J)8(f +f2)

+ G *(f, frf) 8(f+f1)+G*(f, f'f) f +f 2)] (3.14)

The Dirac functions allow us to evaluate the integral; thus we can write the bispectrum

in terms of the transform of the kernels as

B(fIf2) = cT4 (Gf 2) + GVf2 f1) + G *(f 2, fr'f 2)+ G*(f 1,f 1-f 2)

I
I .. a l I I
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+ G (f 1 4f,-f2)+ G*(f,4f2 1) . (3.15)

This relation is very similar to (3.5) in form, and in fact is simply the term by

term two-dimensional Fourier transform of (3.5). This expression cannot be

inverted as easily as (3.5) was, because the causality of the kernels cannot be

exploited as it was in the time domain expression. However, using the knowledge

gained by the inversion in the time domain, one can obtain an expression for

G(f1 ,f2) in terms of B(fjf 2). While this result will not be very useful from a

computational aspect, it is helpful in providing an intuitive understanding about the

relation between the kernels and the bispectrum. We can rewrite (3.7) as

g(rs) = c(r,.)8(r)U(s) + 1 c(rs)8(s)U(r) + 1- c(rs)U(s)U(r)

c(rs)8(s)4(r) (3.16)

where 8(.) is the Kronecker delta function and U(.) is the discrete equivalent of the

Heavyside step function. Taking the two-dimensional Fourier transform of both

sides gives G(f1 ,f2) on the left side and some function of the bispectrum on the right

side. The step and delta functions by which the bicovariance is multiplied can be

regarded as separable two-dimensional functions. Thus their two-dimensional

Fourier transform is simply the product of each of the one-dimensional Fourier

transforms. G(flf2) can now be easily written as:
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G(ft~f 2 )=!B~ff.{&f)+ L+ !B(f If 2 )*(iaf 1)+

+ LBqf11f2)* f Af + f & B(f 1,f 2)*l
(2w)! 2 6 (3.17)

where the asterisk denotes a two-dimensional convolution. One can see why this

would be a difficult relation to use for computation, but it does tell us that the

transform of the kernels are a "smeared" version of the bispectrum. They bear some

resemblance to the bispectrum. It is worth mentioning that in the non-causal case

alluded to earlier, the transform of the kernels is simply the bispectrum scaled by a

constant.

This chapter has described the mathematics involved in the inversion of the

bispectrum in the case of discrete time domain quantities that are infinite in duration

and frequency quantities that are continuous in nature. Of course, in order to actually

implement the methods set forth in this chapter one must deal with finite time

sequences and discrete frequency functions. This means that the bispectrum will be

approximated by samples from a finite number of points, and the bicovariance will

be found by applying the inverse discrete Fourier transform to this approximation.

The implications and restrictions inherent in this approximation, as well as ways to

overcome them, will be the subject of the next chapter.



(MAFER 4

IMPLEMENTATION: METHODS AND RESULTS

The purpose of this chapter is twofold. The first is to discuss the subtleties

involved in the implementation of the inversion methods derived in the previous

chapter. These subtleties revolve around the fact that we are discretizing a continuous

quantity (frequency) in order to compute transforms via the DFT. While to some

such things are mere trivialities, they nevertheless are necessary if one is to obtain

correct results. The second purpose for this chapter is to give the step by step results

of an inversion of the bispectrum.

4.1 Obtaining an Unaliased Bicovariance

Up to this point we have assumed the bispectrum to be a continuous, periodic

function. Its inverse transform is found by an integration over the fundamental

domain. We now want to sample this continuous function and use the inverse

discrete Fourier transform (DFT) to compute the bicovariance. Since we presume to

know the continuous bispectrum we are free to sample with any frequency resolution

we desire. The resolution that is used will place a constraint on the minimum length

of the sequence, but otherwise does not present any fundamental problems. The

fundamental difficulty is in the sampling itself. It causes the bicovariance to be

represented as a finite two-dimensional sequence. This finiteness raises an immediate

problem. Since the bicovariance is in general defined in two dimensions over the

49
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interval (- Os, --), the finite sequence obtained from the inverse DFT of the sampled

bispectrumn is at best an aliased version of the bicovariance and not the quantity with

which the kernels are defined. For definiteness, suppose the bispectrum is sampled

to form an [2N-1 x 2N-I] sequence, thereby constraining the bicovariance to be an

[2N-I x 2N-l] sequence defined over lags in the interval [-N+1, N-I]. For any

arbitrarily specified bispectrum there is no a priori method to determine in advance if

the bicovariance at lags greater than ±(N-1) is relatively small or not. If it is small,

the error due to aliasing may be negligible. But generally one cannot assume this.

The only way to determine aliasing is to simply compute the inverse transform of the

bispectrum. By looking at the bicovariance outside the region of support one can

determine whether it is aliased or not. The values outside the region of support for a

finite record but within the [2N- 1 x 2N-1] square will be zero if the bicovariance is

unaliased. These values are represented by the empty squares in fig. 4.1. This is

because the bicovariance in these regions is equivalent to the bicovariance in regions

where at least one of the lags is greater than ±(N-1). Thus a nonzero value in this

region implies that the bicovariance extends farther than the space allotted to it by the

DFT. One can easily verify this by choosing a point in the region containing empty

squares in fig. 4.1 and applying the symmetry relations of the bicovariance to it.



51

Fig. 4.1 Z ro and Non-Zero Regions of a

Finite Bicovariance
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When estimating in the forward direction, i.e., time series to spectra, a time

domain window is used to truncate the bicovariance in a non-abrupt fashion. The

assumption is that the bicovariance is negligible for lags beyond a certain value. This

is essentially what is needed here. But, while applying such a window is a relatively

simple process in the time domain, it is quite the opposite ia the frequency domain.

There it involves a convolution with the transform of the window. But that is the

least of the problems. A bigger concern is that one does not know the duration or

shape of the bicovariance. Thus it is impossible to apply any sensible criteria in



52

picking a suitable truncation boundary. One cannot determine the lags beyond which

the bicovariance is negligible. The result is that although a window is needed, one

does not have any way of knowing or sensibly choosing what window parameters to

use; specifically, how long should the window be to include all the significant points

in the bicovariance. However, there is another way to look at this problem. Let us

leave the windowing approach for the moment and pursue the problem from a

different perspective.

Another method of obtaining the unaliased bicovariance is to find a

bispectrum which has a finite bicovariance. This is not as hopeless as it may initially

appear. Since the bicovariance can be arbitrarily defined over the interval (- 00,

there is no reason why it could not be zero for lags greater than some L.

,=T92) -L '' 1,:. 2 :5L (4.1)
0'2 elsewhere

This places a restriction on the arbitrariness of the bispectra that can be reproduced.

One can now consider only those bispectra which possess finite bicovariances. This

may seem like a very severe restriction, but this exact assumption is commonly made

when estimating the bispectrum from a time series. Nevertheless it is the price that

must be paid for the use of the DFr. Fortunately this does not place severe practical

limitations on what sorts of bispectra can be reproduced. It turns out that the bigger

problem is not only finding such a bispectra, but also finding one whose magnitude

characteristics are close to those of the desired bispectrum.

I
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A word should be inserted here to avoid possible confusion when attempting

to apply what has been said here to the analogous case of the power spectrum.

Unless one maintains a clear distinction between the estimate of a quantity and that

quantity itself, confusion may easily result. For instance, it is well known that the

inverse Fourier transform of the power spectrum produces an aliased autocorrelation

function. This statement is referring to the situation where one has an M point

random time series belonging to a random process and possessing a coherence time

much less than M (or at least half of M). Thus one assumes that the true correlation

only possesses significant values for time lags in the interval ([r: -M/2 < 5! M/2}

thereby allowing the power spectrum to be estimated from an M point DFT.

However the eimat of the autocorrelation sequence obtained from one M point

ensemble is 2M- 1 points long. This covariance estimate, unlike the true covariance,

is of course =j obtainable from an M point estimate of the power spectrum. On the

other hand, if one assumes to know the rue power spectrum representing the true,

finite M point autocorrelation function, then one can obtain it from the M point

inverse transform of the power spectrum. In the problem that is the subject of this

thesis we assume to know the true bispectra; the problem is finding one which

actually has a finite bicovariance.

Finding a bispectrum which has a finite bicovariance is conceptually simple,

but not as easily implemented. In order to produce a finite bicovariance, one merely

has to satisfy certain additional constraints in the bispcctrum. These additional

relations are found by simply setting the DFT expression for a particular value of the

bicovariance equal to zero. For example, if N=32 then C(20,-20) is outside the

non-zero region of an unaliased bicovariance. Setting this equal to zero gives

&
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Iw

In general there are I1/4(N 2-1) such points in the bicovariance. This gives the

following linear system of equations:

N-I N-1

fi=O f2=o (4.2)

where ie {1,.. .l/4(z-Il)}

Even for small N, solving this system of equations is no small task. It is

further complicated by the fact that the system is over determined, forcing one to pick

the other 3/4(N 2-l) bispectral points before solving the system. These have to be

chosen in such a way that the resulting bispectrum has magnitude characteristics

similar to the desired bispectrum. Since the equations bear close resemblance to the

DFT and in fact differ only by a constant, one can solve them numerically by an

iterative method using the DFT. This is accomplished by specifying the bispectrum

over every other point in a two-dimensional fashion, taking the inverse DFT, and

then setting to zero the proper points in the bicovariance. The modified bicovariance

is then transformed back to the bispectrum where the initially specified points are

reset and the other points are left alone. This process is continued until the desired

degree of accuracy is reached. The iteration will converge as long as there are at least

1/4(N 2 - 1) points left unspecified in the bispectrum. In other words, all that is being

done is to trade the choice of setting values in the bispectrum for the choice of setting

an equal number of values in the bicovariance. In this way one can modify a
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bispectrum to force it to possess a finite bicovariance. By spreading the specified

points out in dhe fashion indicated above we ame enabled to satisfy both the symmnetry

requiremnts of the bispectruni and the goal that the modulus of the miodified

Fig. 4.2 Initial Sgecification of B trum
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bispecrum- have close ageement with the desired bispectrum. The end result of this

iteration is simply the equivalent of windowing in the time domain. If one does not

window, then there will be nonzero values in the part of the bicovariance shown by

empty squares in fig. 4.1. Blindly proceeding with the inversion is equivalent to

setting these values to zero. This of course changes the bispectun in an unknown

and hence uncontrollable way. Use of the iteration algorithm also changes the

bispectrum, but it does so in a way that allows one to control what gets changed and

what does not. Finally, it is worth noting that the surface integral of the modified

bispectrum over the fundamental domain is unchanged. In other words the points

added to the modified bispectrum contribute in such a way so as not to change the

skewness of the time series.

4.2 The DFF of the Moel

The purpose of this section is simply to modify the frequency domain

equations derived in the last chapter so that they are written in terms of the DFT.

Since the model is essentially a linear two dimensional convolution a certain amount

of zero padding is necessary to break the circularity of the DFF.

The method used to find the DFT is identical to that used in section 3.3.

Accordingly, in this section, we will only present the equations that are different. In

order to obtain a sensible result, the DFT of eta, epsilon, x(t), and the kernel

sequence must be evaluated at the same points in the frequency domain. Since the

random variates, the time series, and the kernel sequence are all of different length,

they must each be padded with zeroes to achieve a uniform length over which to

compute the DFT. Let the kernel sequence be N x N. The time series must then be
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at least of length 2N making the length of epsilon and eta 3N- 1 points. Further zero

padding may be necessary in order to efficiently use an FFT algorithm. Letting the

longest length be n, the DFT of the model can be written as

X~~~2(k) =&*() + U(k) + . ()l~- kkk1)(4.3)

A:, = 0

The underline signifies a zero padded sequence. This will produce a time series of

length n. Only the first 2N values are retained; the remainder are either zero or

unwanted numbers.

4.3 A Demonstration of the Inversion of a Bispectrum with the

UBM

The software to implement the inversion was written in Fortran 77 on the

CYBER 830 at ARL:UT. It allows one to specify the desired bispectrum and the

desired resolution. Current limitations of the CYBER restrict the resolution of the

specified bispectrum to a complex array of 128 x 128. For convenience, let the

frequency interval between points be 1 Hz. This choice is entirely arbitrary. Any

other number could just as easily be used. This restriction implies that the maximum

possible resolution in the bispectrum is obtained when the isosceles triangle in the

principal domain has a base of 65 points and a height of 33. This in turn will

produce 642 nonzero weights.

Another factor is the computation time. Each iteration of the specified

bispectrum requires two 128-point two-dimensional Fourier transforms plus

additional computations on a significant portion of the array. In the light of these
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considerations, 50 iterations were performed on the specified bispectrum in the

results presented below. This resulted in an error of less than 1 percent at the

specified points of the bispectum.

4.3.1 The Results

For this example the initial bispectum was specified to be:

B(f f= 5&'f - 8) C2- 4) (4.4)

The maximum resolution was used. A plot of the resulting modified bispectrum is

shown in fig. 4.3. This is the bispectrum that has a bicovariance which is zero for

lags greater than 63. The kernel sequence was found from this bispectrum. Using

the relation in (4.3), 60 128-point ensembles were computed. The first eight

records of the resulting time series are shown in fig. 4.4. The estimated power

spectrum and the actual power spectrum are shown in fig. 4.5 and fig. 4.6. The

actual power spectrum was computed from the relation given in section 3.2.3. As the

overlay plot in fig. 4.7 shows, there is very good agreement between the estimated

and the actual power spectrum. Since the power spectrum is much easier to

compute, it was used as an indicator of how many time series were necessary. Poor

agreement here would be indicative of even worse agreement in the bispectrum. Fig.

4.8 shows an estimate of the bispectrun obtained using the Hinich estimator [Hinich,

1982]. While it is not helpful to overlay the initial bispectrum and this estimate, one

can observe that they are in good general agreement. By raising the threshold of the

plot one can verify the location of the big peak. Such a plot is shown in fig. 4.9.

From this plot it is easily seen that the peak is in the proper location.
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Fig. 4.3 The Desired Blisgetrum
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Fig. 4.4 The Generated Time Series
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Fig. 4.6 The Predicted Power Spectrum
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Fig. 4.8 Estimated Bis~ectru
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FIL7. 4.9 Raised Threshold Plot of the Estimated Bisuectrum
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Fig. 4.10 Power Sled= with Asymmetric
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Fig. 4.12 Bisectrum of the Two Samle Time Series
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In section 3.2.3 it was shown that by altering the relation between the kernel

functions (see fig. 3.2) different time series could be produced which had identical

bispectra, but different power spectra. An example of this is shown in figs. 4.10

and 4.11. These power spectra were computed from two time series which have

. .,
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identical bispectra. This bispectrum is shown in fig. 4.12. Because it is not

possible to arbitrarily specify both the bispectrum and the power spectrum at the same

time, it is not possible to significantly change the power spectrum. One cannot

remove power at any of the three frequencies associated with a point in the

bispectrum. Thus in essence all that has been done in the above example is to "bury"

the peaks seen in the spectrum of fig. 4.11 by adding a very large peak to the

spectrum of fig. 4.10.



CHAPTER 5

SUMMARY

This thesis has presented a method of producing or estimating a stochastic

time series that has any desired bispectral characteristic. This involved the use of an

infinite order moving average model whose bicovariance was obtainable as a finite

linear relation of the kernels. This expression was then inverted to produce an

expression giving the kernels in terms of the bicovariance. However, this inversion

is not unique. In order to identify a unique kernel function, an additional constraint

had to be invoked. This constraint was imposed in the form of a relation between the

kernel function g(rs) and g(sr). The particular relation used was g(r,s) = g(s,r).

This was an entirely arbitrary choice used only because of convenience. Any other

choice could have been used. As was demonstrated, a different choice will not

change the bicovariance, but it will in general change the other polyspectra. The

effect on the power spectrum of a different kernel relation is shown at the conclusion

of chapter 4.

Once the kernels have been found the problem is theoretically solved.

Knowing the kernels allows one to compute the time series. However, when one

attempts to implement this solution some other problems arise. These problems are

the direct consequence of approximating infinite sequences with [mite ones. In

general the inverse transform of the bispectrum is an infinite sequence. Thus blindly

inverse transforming the bispectrum will in general give one an aliased version of the

bicovariance. This problem was circumvented by finding a bispectrum which has a

67
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finite bicovariance. This simply amounted to giving up control over the value of

some bispectral points in return for control over an equal number of points in the

bicovariance. This was done in such a way so as to have minimal effect on the

modulus of the desired bispecrm It should be emphasized that if the bicovariance

is finite it can be obined from the inverse transform of the bispectrun, and in an

analogous manner the unaliased autocorrelation function can be found from the power

spectrum provided the number of points used to represent the power spectrum is

equal to or greater than the length of the autocorrelation, i.e., F : lfl where F is the

resolution of the power spectrum and T is the length of the autocorrelation. This

may come as a surprise to one thinking in terms of estimating spectra from a time

series. This is the result of confusing an estimate of the bicovariance

(autocorrelation) with the true bicovariance (autocorrelation).

Having found the kernels it turned out to be easier to compute the transform

of the weights and then compute the DFr of the time series. This is because the DFr

involves a single integral (summation) over a product of the transform of the

weights and the Gaussian variates as opposed to the double integral (summation) that

is required in the time domain. Results of a sample inversion were shown in the case

where the bispectrum consisted of a single peak. Other inversions were also done

yielding equally good results. Generally speaking, increasing the variance increases

the number of time series needed to reproduce the bispectrum. This is simply due to

the fact that epsilon and eta are produced by pseudo-random number generators. The

resulting time series has the proper bispectrum to the extent that the random variates

approach the Gaussian, zero mean assumption. A higher variance simply means that



69

mome random variate records are needed before die estimated hurd, fifth, and higher

orde moments are actually weo.



APPENDIX A

COMPUTING THE BICOVARIANCE WITH THE TWO.

DIMENSIONAL FFT

Since the bicovariance is defined over the interval (-N, N) and the

bispectrum is defined over frequencies [-1/2,1/21, they must both be

appropriately shifted before being transformed with the DFT so that B(0,0) or

C(0,0) sum without being phase shifted and not B(-1/2,-1/2) or C(-N,-N). The

mechanics of this translation are shown in fig. A-I. By translating the bispectrum

in this way, the negative frequency term (exp(-j2x(klll+k 212)/N) } of the DFT is

being replaced by the equivalent term (exp(j2x((N-kl)ll+(N-k2)12)/N)). The

inverse transform of this array is an analogously shifted version of the

bicovariance. The mechanics of the translation of the bicovariance is nearly

identical. The only difference is that the bicovariance must be padded

two-dimensionally with a zero in order to make its dimensions even so that the

FF1 may be used.

i
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APPENDIX B

TIME SERIES GENERATION SOFTWARE

C WRITTEN BY PETER ALLISON.

C JANUARY 1988

C THIS PROGRAM COMPUTES A TIME SERIES WITH A GIVEN BISPECTRAL
C CHARACTERISTIC BY
C 1) COMPUTING THE WEIGHTS IN THE FREQ DOMAIN FROM THE GIVEN
C BISPECTRUM
C 2) COMPUTING THE Fr OF THE DESIRED SIGNAL IN THE FD (FROM THE
C WEIGHTS)
C 3) INVERSE DF TRANSFORMING THE RESULT TO PRODUCE THE DESIRED
C SIGNAL

PROGRAM BTSFTN4

INTEGER IRCNWCIWK(918),ESTN2,MKLLTSNV
INTEGER NRC,ERR

REAL XT(128),XS(1024),XP(1024),ETA(200),GNU(200)
REAL SIG.SCALEMAXMAXS.MINSPSE(128),PST(512),RWK(918)
REAL TIC

DOUBLE PRECISION DSEED

COMPLEX CX(128),CE(128),CN(128),SUMC(128,128),CG(128,12s)
COMPLEX CXTS(128),CWK(128)

OPEN(UNrr=9XILE='WEIGHTC)

DATA PSE/128*0
DATA MINSMAXSMAX13'0j
DATA CCG/32768*(0.,0.)I
DATA CXTS/128*(.,O.)/
DATA ERRII

REWID)

C
C THERE IS AN OPTION TO EITHER READ THE BICO VARIANCE IN FROM
C A FILE (WEIGHTC) OR TO READ THE BISPECTRUM IN FROM
C FILE DATA.
C

4 PRINT*,INPUT I TO GENERATE THE MODEL WEIGHTS, INPUT 2
PRINT*, TO READ THEM IN FROM FILE WEIGHTC
READ*,TEST

73
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LTS=m128
IF(TEST.EQ.1) THEN

2 PRINTVONUT THE NUMBER OF WEIGHTS TO USEF
PRIWF: (MAX 64)Y
READ.,N
F(N.GT.64) THEN

PRNT,' NUMBER IS GREATER THAN 64'
GOTO 2
ENDIF

XCALL REWD
ENDIF

PRINT,lNPUT THE NUMBER OF RECORDS TO GENERATE'
READ*,NREC
PRINT*,I

PRIN7*.INPtr SIGMA!
READ*,SIG
PRINT,'

IF(TEST.EQ.2) THEN
READ(9,*) N
PC22"N
PRINT*,ENTER 0 TO DISCARD EXISTING T.S.'
READ*I.NRC
IF(NRC.EQ.0) CALL REWD
CALL GENERG(CCGN2.SIGRWKIWKCWKTES7I)

ELSE
ICALL BISPIN(CCG.N2,SIGIWKRWKCWK.TESTERR)

IF(ERR.EQ.1) THEN
PR]NT*,ENTER A BETTER VALUE FOR N
READSN

N2=2*N
GOTO I

ENDIF
ENDIF

CLOSE(9)
OPEN(UNIT-4FILE=-BTSOUT)
OPEN(UNrr-5,FIEaTIMSER')
OPEN(UNrr-6YILEa'lM[SER 1'
REWIND(4)
WRfTE(4,)'NUMBER OF WEIGHiTS USED IS ',N
WRITE(k*) 'NUMBER OF RECORDS COMPUTED IS ',NREC
WRITE(4,) VARIANCE OF ETA AND EPSILON IS ',SIG**2

C BISPECFRUM HAS BEEN LOADED INTO ARRAY C.
C THE UNALIASED BICOVARIANCE HAS BEEN COMPUTED.
C THE MODIFIED BISPECTRUM IS NOW IN ARRAY C.
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C FOURIER TRANSFORM OF WEIGHTS IS IN ARRAY CO
C NOW GENERATE THE TIME SERIES IN THE FREQUENCY DOMAIN
C

PRIMrGENERATE RANDOM VARIATES'
0PEN(UNIT-3,FRLE=DSEED )
REWIND(UNIT-3)
READ(3.3) DSEED

3 IVRMAT(D17. 10)

IF(N.LT.42) THEN
FPAIw0
NV=3*N-1

ELSE
FPAN1l
NV-LTS-I

ENDIF

C LOOP 110 IS DONE ONCE FOR EACH RECORD GENERATED

DO 110 IRC=1,NREC
CALL GGNML(DSEEDNV.GNU)
CALL GGNML(DSEEDNVETA)
DO 120 I=1,NV

GNU(1)GNU(1)*SIG
ETAMI=ETA(1)*SIG
C2EQ)-CMF(ErA(I))
CN(I)-CMPLX(GNUQ))

120 CONTINUE
DO 130 I=NV4-1LTS

CEN(r)=CMPLX(0.)

130 CONTINUE
CALL FF2C(CE,71WK)
CALL FFr2C(CN,7.IWK)

C THE DFT OF THE PADDED VARIATES IS COMPUTED IN 120 AND 130

DO 140 K=0,LTS- I
CX(K+1)=CMPL-X(0)
SUM=CMPLX(0)
DO 150 L=0,LTS-1I

M--K-L
IF(M.LT.0) M=LTS+M
SUM=SUM+CE(L+1)*CN(M+1)*CONJG(CG(L+1 ,M+ 1))

150 CONTINUE
CX(K+a.)=SUM/LTS + CE(K+1) + CN(K+l)
CXTS(K+1)=CXTS(K+1)+CX(K+1)
CX(K.1)=CONJG(CXQC+1))
CXTS(K+ 1)=CONJG(CXTS(C+ 1))
PSE(K+1)=REAL(CX(K+1)*CONJG(CX(K+1)))ALT+PSE(K+1)

140 CONTINUE
13 FORMATCSUM(,12.)=',4(E 16.7))
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C TAKE THE INVERSE TRANSFORM OF THE TIME SERIES

CALL FFr2C(CX,7,IWK)

WRJTE(4,*)** XT(I) ***CX(1)** CX(I+N)
DO 160 I-I,LTS

XM-REAL(CX())A..TS
IF(IRC.LT.9) XS((lRC-1)*LTS+)=XTQl)
JF(MAXS-LT.XI'Q)) MAXS-XT(I)
JF(MlNS.GT.xT(I)) MlNS'XT(l)
WRITE(4,1 1) I.XT(I),CXQ)X
IF(FPAD.EQ.0) THEN

WRrrE(6,9) XT(I)
IF(LGT.2*N) XTQ)=.

ELSE
WRITE(6,9) XTQl)
IF(LGT.LTS-N) XT(4)=.

ENDIF
WRITE(5.9) XT(I)

160 CONTINU

PRINT*YIMSHED THE ,IRC .TH TIME SERIES'

110 CONTINUE
11I FORMAT( XTC.13.)-=,FS.3, CX(1)-',2(E12.4): K = X13)

CLOSE(s)
CLOSE(6)

REWIND(UNIT=3)
WRITE(3.3) DSEED
CLOSE(3)

C COMPUTE THE BISPECTRUM

CALL BISPGEN(CGCCXTSLTS,SIGNRC)
CALL FFr2C(CXTS,7,IWK)
PRINT,INISHED COMPUTING THE BISPECTRUM

OPEN(UNIT7,FILE=MSER2)
DO 170 1-I,LTS

CXTSQ)=CXTSQly(LTS*NREC)
WRJTE(7.9) REAL(CXTSQ))

170 CONTINUE
CLOSE(7)

PRINT*: BEGIN POWER SPECTRUM COMPUTATION
WRITE(4,") *****POWER SPECTRUM * * '

DO 200 I= ,LTS/2+1
PSE(I)=PSE(I)iNREC
WRrTE4,8) IPSEQl)
IF(PSEQ).GT.MAX) MAX=PSE(1)

200 CONTINUE

DO 210 1=1,1024
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XPQl)=I
210 CONTINUE

C PLOT THE TIMIE SERIES AND THE BISPECTRUM

CALL PLTLFN(L-PLOT1".,L"1234567890".10000)
CALL PLTORG(1.,1.)
CALL PLTAXIS(O..O.,.,O.,.,65..2.,L"FREQUENCY",-) 0.5)
CALL PLTAXIS(0.,0.,5.,90.,O.,1 .,.2,L-EST PS -,10,1)
CALL PLTDATA(XPPSE,65,0,0,0.6515.,O.,MAXIS.,.08)

CALL PLTEND(8.5,1 1.0)

CALL POWSPEC(CG,SIGPST,MAX)

CALL PLTLFN(L-PLOTI -,L' 1234567890-,10000)
CALL PLTORG(l., 1.)
CALL PLTAXIS(0..0.,5.,0.,0.,65.,2.,L-FREQUENCY-,- 10,5)
CALL PLTAXIS(O.,0.,5.,90.,0.1 .,.2,L"COMP PS -.10,1)
CALL PLTDATA(XPPST,65,0,0,0..65./5.,0.,MAXIS.,.08)

CALL PLTEND(8.5,1 1.0)

IF (NREC.GT.7) THEN
PRINT*,MAX IS ',MAXS,' MIN IS ',MINS
PRINT*,NPUT STARTING VALUE FOR PLOT
READ.jMINS
PRINT*,'[NPUT THE TIC INTERV AL'
READ*,TIC
IF(MIINS.GT.0)MNS=G.
SCALE--(MAXS-MINS)/5
CALL PLTLFN(L"PLOTI",L" 1234567890",10000)
CALL PLTORG(1.,1.)
CALL PLTAXIS(O.,0.,5.,0.,0.,1024.,20.,L"TIME"i,- 10,5)
CALL PLTAXJS(0.,0.,5.,90.,MINS,MAXS,TIC.L"AMPLITUDExl 0,2)
CALL PLTDATA(XP.XS,1024,0,0,0.,1024/5.,MINSSCALE,.08)
CALL PLTEND(8.5,1 1.0)

ENDIF

8 FORMAT(I3,2(E17.8))
9 FORMAT(E17.8)

OPEN(UNIT= 18,FILE='BISPDAT")
REWINI(18)
READ(18,*) NRC
NREC=NRC+NREC
REWIND(18)
WRITE(18,*) NREC
CLOSE( 18)
CALL BSDATFL(LTSNREC)
END
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C SUB3ROUTINES

SUBROUTINE BISPIN(CCG.N,SIGIWK.RWK.CWK,TEST,ERR)

C THE BISPECTRUM IS INPUT FROM FILE DATA THEN THE UNAL EASED
C BICOVARIANCE IS FROUND BY ITERATION. THE BISPECTRUM,
C THE TRANSFORM OF THE WEIGHTS. AND THE BICOVARIANCE
C ALL ARE WRITEN OUT TO FILES.
C

REAL CST(64),SIGRWK(9 18)

INTEGER LI (64),12(64),F.N2ERRTESTIWK(9 18)

COMPLEX C(128,128),CG(128, 128),BCWK(128)

OPEN(UNIT= I,FILEFTOUT')
OPEN(UNlT=2,FILE=-DATA')
OPENgUNrT=15XFE=TISP)

REWIND(UNIT=2)
RE-WPND(NIT=I)
REWIND(15)

WPJ.TE(15,*) N/2+1
WRJ.TE(15,*) N14+1
N2--N/2

PRINT*.INPUT NUMBER OF NONZERO BISPECTRUM POINTS'
READ(2,A) NP

4 FORMAT(13)
PRINT,NUMBER OF NONZERO BISP. POINTS IS ',NP
F=N+I
PRINT .INPIYT BISPECTRUM FROM FILE DATA'
DO 5 I=1,NP

READ(2,7)L1Q),L2Q),CST(I)
PRINT*.'BC,L1(I).L2(I),') = ,.CST(I)
IF(LI (I).GT.Nt2.OR.L2Ul).GT.N/4.ORJJ1()+L2(D.GT.N2) THEN

PRINT*, OINT OUTSIDE THE PRIN. DOMAIN
ERR=I
GOTO 99

ENDIF
5 CONTINUE
7 FORMAT(I3,12,F4.1)

PRINT 'INPUT # OF ITIERAT1IONS.'
READ*.K
WRITE(I,*) ****** K

C EACH LOOP 30 REPRESENTS ON ITERATION OF THE BISPECTRUM

DO 30 M=1.K
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CALL NEXIsTB(CN
DO 15 1- ,NP
B=CMPLX( CSTQ))

C(L1(1)+L2(I)+1,-Ll([)4.F)-B
IF(L2(I)MN.0) C(L1(I)+L2(D+1 -L2)+.F)=B
IF (L2(1).NE.0) C(-L,2(D)+F.-Ll1Q)+F)=B3
IF(L2()NE.0) C(-Ll(1)+F.-L201)+F)=B
C(-LI(ID-L2Q)+F.J21)41)=B
C(L2(I)+1 .F-LI(1)-L2(I))=-B
C(Ll~IQ.I-I()-L2())mB
C(F-LI(1)-L2Ql).LI(l)+1)=B
IF(L2Q).E.0) C(F-1201),2(D)+LI (D+I)=-B
C(F-LI(1).L1QI)+L20I)+1>=B

15 CONTINUE
CALL FMl'D(C,128,128,NN,1,-1.IWKRWKCWK)
IF(M.LEQ.K) THEN
DO 10 I=1N2
DO 1OJ=1,N2

10 WRIrE(1.1)I-,-C(JM
ENDIF

C BEFORE TRANSFORMING SET TO 0 VALUES OF BICOV. THAT DONT EXIST.

IF(M.NE.K) CALL NEXISTC(CN)

C IF IT IS THE LAST LOOP THEN USE TtHS BICOVARIANCE, TO COMPUTE G

EF(M.EQ.K) CALL GENERG(CCGN,SIGRWKIWKCWKTEST)

IF(M.EQ.K) THEN
DO 50 1=1,128
DO 503=1.128

WRrTE(1,3) 1.1,J-1,CGQJY)
50 CONTINUE

ENDIF
CALL FF13D(C,128,128,NN,1,11WKWKCWK)
IF(M.EQ.K) THEN

DO 20 i=1.N2/2+1
DO020 l=lN2+1

IFQJ.LE.I.ANDJ+I.LE.N2) THEN
WRrrTF(15,*) SQRTQIEAL(C(IJ)*CONJG(C(IJ))))

ELSE
W"rE(15,*) 0.

ENDIF
20 CONTINUE

WRITE(1,2) I-14-1,C(IJ),M
ENDIF

IFORMAT(' C(',12,',',12,) - ',2(E16.6),' K= ',12)
2 FORMAT(' BC,12,',',12,) = ,2(E16.6),' K= ',12)
3 FORMAT('G(,13,'.,3,') -',2(E16.6))

PRINT*,TINISHED THE ,M, TH ITERATION OF THE BISPECTRJM
30 CONTINUE
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ERR=O
99 CONTINUE

CLOSE(l)
CLO)SE(2)
CIL)SE(15)
RETURN
END
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SUBROUTINE GENERG(CCGN,SIGRWK.IKCWK.TES1)

C THIS SUB COMPUTES THE KERNELS FROM THE BICO VARIANCE
C IT USES A SYMMETRICAL RELATION BETWEEN THE WEIGHTS.
C HOWEVER ANY RELATION COULD BE USED.
C

COMPLEX CG(128,128).C(128,128),CWK(128)

REAL RWK(918),SIG

INTEGER NIWK(918),TEST

OPEN(UNfT=8,FILE=-WEIGH TS)
REWIND(UNIT7=8)

C EITHER THE WEIGHTS ARE READ IN OR THE BICO VARIANCE
C COMPUTED IN SUB. BISPIN IS WRITTEN OUT TO A FILE

IFfTEST.EQ.1) THEN
WRITE(8,*) N/2
WR1TE8,) Nt2
DO 301I= 1,N/2
DO 30 .J=1,N/2

WRrME8,*) REAL(C(lIJ))
30 CONTINUE

ENDIF

EF(TEST.EQ.2) THEN
PRINT*,.INPUTING G'
DO 5I=1,N/2
DO 5 J=1,N/2

READ(9,*) VALUE
C(IJ)=MPLX( VALUE)

5 CONTINUE
ENDIF

C FIND THE WEIGHTS
DO 10 1-2,N/2

CG(1,I)=.25*C(I ,I)*(I .SIG**4)
CGQ1.1)=CG(1IJ)

10 CONTINUE
CG(1 ,1)=(1./6.)*C(1,1)*(1 .SIGO*4)
DO 201-=2,N/2
DO 20 J-2,N/2

20 CONTINUE

PRINT.*,COMPUTING THE TRANSFORM OF THE WEIGHTS'
CALL FFr3D(CG,128,128.128,128,1,I ,IWKRWKCWK)

3 FORMATC GC,13,',,13,) = ',2(E16.6))
DO 50 1=1,128
DO 50 J-1,128

50 WRI1,3) I-1,J-1,CG(IJ)

* :4j
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CLOSE(S
RETURN
END
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SUBROUTINE 3ISPGEN(CG.C.CXTSLTSSIGNREC)

C
C TIS SUB COMPUTES THE BISPECTRUM FROM THE WEIGHTS AND IT
C COMPUTE THE BISPECTRUM OF THE AVERAGED TIME SERIES.
C THIS IS A HIGH VARIANCE ESTIMATE OF TIM BISPECTRUMK
C

COMPLEX CXT(128),CO(128.128),PMET.C(128.128)

INTGER LTS1.L212XUJA,MjREC

REAL TEMPSIG

PRINTOMPUTING BISPECTRUM'
OPEN(UNITI6FILE=PBISPT)
OPEN(UNIT=17XFILE-PBISPE)
REWMN(16)
REWINM17)
CALL ZER02(C, 128)
L~LTS/4

DO 10 I=0.LTS/2
IF(L.LE.K) THEN

MZI
ELSE

M=LTS/2-I
ENDIF
DO 20 J=OM

IF(LNE.O)THEN
1.2-1284J+1

ELSE
L.2al

ENDIF

IF(L.NE.0) THEN
LI=128-I+1

ELSE
Lill

ENDIF
U=I+J+1
PMET=CG(I+1 J+1)+CONJG(CG(L1 ,u))+CONJG(CG(u,L ))
PM]ET=PMET+CONJG(CG(L2LJ))+CONJG(CG(UL2))4CGQJ+1,I+ 1)
WRrTE(16,*) PMET
PMET-CXT(+1)*CXTS(J+1)*CONJG(CXT'S(U))
WRITE(17,*) PMET

20 CONTINUE
DO 30 J=M+1,K

PMETaCMPLX(0.)
WRITE(17,0) PMET
WR1TE(16.*) PMET

30 CONTINUE
10 CONTINUE



C THE REMAIN IN CODE S M LY WR IS THE DATA OUT IN A FORM THAT 8

C CAN BE PLoTFED.

REWIND(17)
DO 40 I-0,LTS/2
DO 40J-0,X

READ(16,') C(I+lJ+l)
40 CONTINUE

REWD(16)
WRnTE(16,*) K+l
WRrIE(16,O) LTSf2+l
DO 50 IuOXTS/2
DO 50 J=K,0,-

PIMETu.C(I+1.J+1)
TEMMaSIG*04)SQRTREAL(PMETOCONG(PMEI)
WRfTE(16,) TEMP

50 CONT2NUE
DO 60 Iu'0LTS/2
DO 60 3-O.K

READ(17.*) C(I+lJ+1)
60 CONTINE

REWIND17)
WRITE(170) K~l
WRMT(17.*) LTS/2+1
DO 70 I=0J.TS(2
DO 70 J=K.0.-I

PMIET.C(I+ Ij+l)
ThgP-REAL(PMETrCONJG(PNMI)NREC**3

70WRITE(17,*) TEMP
7CONTINUE

CLDSE(16)
CLOSE(17)
RETURN
END
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SUBROUTINE REWD
OPEN(UNIT-1S.FILE- BISPD)AT)
OPEN(UT=r7FILE1?IMSER2)
REWIND(S)
REWIND(6)
REWIND(7
REWIND(18)
WRrrE(18,) 0
CLO)SE(18)
CLOSE(7)
RETURN
END

SUBROUTINE POWSPEC(CG,SIGPST.MAX)
COMPLEX CG(128,128)
REAL PST(128),SIGSUMMAX
MAX=0
DO 10 1-.127

SUM=0
DO 20J-0,127

M=I-J
IF(M.LT.0) M=128+M
SUM--SUM+REAL(CG(J+IM+1)*CONJG(CG(J+IM+ 1)))

20 CONTINUE
PST(I+1)=2SIG**2+SUM*(SIG**4)
IF(PSTQ1+1).GT.MAX) MAX=PST(1+1)

10 CONTINUE
RETURN
END

SUBROUTINE ZERO(AND)
COMPLEX A(128)
DO 10 I-1,ND

AQ)=CMPL.X(0)
10 CONTINUE

RETURN
END

SUBROUTINE BSDATFL(NNREC)

C THIS SUB CREATES THE NECESSARY FILES WHICH CAN BE READ BY THE
C BISPECTRUM ESTIMATION ALGORITHM

INTEGER NUMINNREC
NUM=N*NREC
OPEN(UNrr=10,FIL.E-=REFINF)
OPEN(UNIT=1 EFILE=-FINF)
OPEN(UNIT-12,FILE-?WRGINF )
OPEN(UNri--13,FILE--WRAINF)
OPEN(UNIT=14,FIE='BISPINP)

4j
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REWI(O)
REWIND(11)
REWIND(12)
REWURD(13)
REWIND(14)
WRrrE(1O,*) -IMER-
WRrFE(O.') 'Tsp10"
wRrrE(10,o) 'i1,NuJNL1'
WRITE(iO,*) 11
WRrITE 0,') N
WRrIT(O,') MREAL'
WRrIT1O,') 'REAL

WRrIT1O,') -(E17.8)-
WRrE(1O.) '1
WRITE( 1,') TSPIO"'

WRrTE(11,*) '1,.NEC,,

WRITE(11I,*) N
WVRMT(12*) "FFr
WRrME12,) -POWSPC"'
WRITE(12.0) 'I,'.NREC,'
WRITE(12,) 2*N
WRrME13,*) -POWSPC.
WRITE(13,')-NEWPWR"
WVRITE(13,) 1ANREC:,1

WRITE(M3,) N/2+1
WRITE(13,') NREC
CLOSE(13)
OPEN(UNIT=14YFILE=ISPINF)
WRrTE(14,)Y"SPIO'"
WRrrE(14,*) FFr"
WARMT(14,O) '1,,NREC,'
WRn7E(14,*) '1,,2N,'.I
WRITE(140'rY"
WRITE(14,*) SPIO
WRMT(14.*)"NEWPWR-
WR1TE(14,*')'11'
WRITE(14.*' 1,N/2+1,1

WRITE(14.*) N

WRITE(14,)-N-
WRIT(14,) NP.EC
WRnTE(14,'Y'BISPRT"'
WRITE(14.,)-?WAVG"'
WRITE(14,) m BiRAw'"

WRITE(14,Y"N'"
WRITE(14,0) tmBISUM"-
CLOSE( 10)
CLO)SE(1 1)
CLO)SE(12)
CLOSE( 14)
RETURN
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END

SUBROUTINE NEXISTC(C.N)
COMPLEX C(128.128).Z
INTEGER N
ZmCMPLX(0)
DO 5I=1,N
DO 5J=1,N

C(Ij)--CMPLX(REAL(C(I)))
5 CONTINUE

DO 10 1-2,N/2
DO 10 J21N12+1

C(N2lj>=Z
C(J.N/2+I)=Z

10 CONTINUE
DO 201I.N

C(Nt2+1.I)=Z
CQI.N/2+1)=Z

20 CONTINUE
RETURN
END

SUBROUTINE NEXISTB(C.N)
INTEGER NCT
COMLE C(128,128)
DO 10 I=1,N,2
DO 10 J=IN,2

C(IJK=MPX(0)
10 CONTINUE

C ZERO OUT THE BISP THAT DOESNT EXIST- IF NYQUIST IS TO BE SATISFIED

NCT=2
DO 20 J=N/2-1,N/4+1,-l

DO 30 I=NCTJ
CQI+lj+1)=CNMX(0)
C(J+lJ+1)=CMPLX(0)

30 CONTINUE
NCT=NCT+l

20 CONTINUE
NCT=N-2
DO 40 J=NtZ+ 1 XN-2

DO 50 I=Nt2+ ,NCT
CQI+1,j.)-CUPLX(0)
C(i+1J1+1)=CMIPLX(0)

50 CONTINUE
NCT=NCT-I

40 CONTINUE
RETURN
END
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SUBROUTrINE ZERO2(BM
UnWER M
COMPLEX B3(128.128)
DO 10 I-1.M
DO 10OJ-1,M

B(I.j)-CMPLX(0)
10 CONTINUE

RETURN
END
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